The North Atlantic Subtropical Surface Salinity Maximum as Observed by Aquarius

Frederick Bingham UNC Wilmington

Collaborators: Julius Busecke, Arnold Gordon and Claudia Giulivi (LDEO), Zhijin Li (JPL)

Also thanks to J. D'Addezio! Work funded by NASA

Journal of Geophysical Research Oceans doi:10.1002/2014JC009825

The SPURS Experiment

- Surface salinity maximum and formation site of subtropical underwater (STUW) O'Connor et al., (2005)

Formation of STUW

Gordon and Giulivi, 2014

Mean SSS in SPURS region from

 Aquarius

Aquarius L2 V3.0 data averaged into 0.5° alongtrack bins. Aug. 2011 -Sept. 2013

Seasonal SSS in SPURS Region

Along-track variability

Probability of finding fronts

Along-track standard deviation

SSS change (2013-2012): (2012-2011)

Mean (1993-2013) current speed (cm/s) from OSCAR

Mean E (red), P (blue), E-P (green) and moisture flux divergence (black)

Observed E-P plus observed surface current gives SSS change of ~ 0.6 between 15 and $25^{\circ} \mathrm{N}$ vs. observed of about 1.5^{*}

The SSS-max as a negative feedback loop

Higher surface salinity in SSS-max
-> higher salinity subducted STUW
-> greater stratification between surface and STUW
-> decreased detrainment of freshwater from the surface as it flows poleward
-> decreased surface salinity in SSS-max

Motion of Barycenter of SSS-max

Latitude
SPURS Central Mooring

Longitude

South Pacific SSS-max

South Pacific SSS-max position is correlated with ENSO. What about the N. Atlantic?

Summary

- Documented mean structure and variability of the SSS-max using Aquarius data
- The SSS-max has low variability and a small seasonal cycle
- Parts of the SPURS region have gotten fresher at a rate of $\sim 0.2-0.3 \mathrm{psu} / \mathrm{yr}$
- Propagation of seasonal phase is consistent with northward transport by Ekman flow and the classic view of SSS-max formation
- The SSS-max shows evidence of frontal structures and fresh intrusions, either advective or from rainfall
- There was a rapid decrease in SSS in the second half of 2012 and a decrease in surface area covered by the SSS-max, possibly related to low E-P (heavy seasonal rainfall)
- Future work will gain insight from comparison with other ocean basins and by elucidating the links between the SSS-max areas and global phenomena such as ENSO and the NAO

A Subtropical North Atlantic Regional Atmospheric Moisture Budget*

E-P (mm/day) plus Ekman Transport

Mean E (red), P (blue), E-P (green) and moisture flux divergence (black)

Observed E-P plus Ekman transport gives SSS change of ~ 0.6 between 15 and $25^{\circ} \mathrm{N}$ vs. observed of about 1.5
*D'Addezio and Bingham, 2014. Data are from ERAI, averaged over 1979-2013

