### Aquarius Scatterometer Calibration and Bias Drift Correction

Alex Fore, Simon Yueh, Wenqing Tang, Akiko Hayashi

# Drift in Scatterometer Calibration

- A very small drift in the scatterometer calibration can be observed over the first few months.
  - Magnitude of drift is order 0.1 dB
  - Time scale is about 1.5 months
- We fit an empirical exponential to these observed sigma0 minus expected sigma0.
- Similar trend observed in all beams/channels indicating trend in common part of scatterometer hardware.
  - Recall Aquarius has one scatterometer, shared between antenna feed-horns for three beams.





### Sigma0 Bias Correction Model

$$\sigma_0^{bias}(t) = A e^{-(t-t_0)/\tau} + C$$
  $t_0 = August 25^{th} 2011$ 

Motivated by the hardware design, we use the same magnitude and decay constant for the exponential adjustment, with different offsets for the various channels.

|           | A [dB] | Tau [days] | C [dB] |
|-----------|--------|------------|--------|
| Beam 1 HH | -0.12  | 45         | 0      |
| Beam 1 VV | -0.12  | 45         | 0      |
| Beam 2 HH | -0.12  | 45         | -0.07  |
| Beam 2 VV | -0.12  | 45         | -0.03  |
| Beam 3 HH | -0.12  | 45         | -0.05  |
| Beam 3 VV | -0.12  | 45         | -0.015 |











-0.5 Line - Line

Beam 1

Beam 2

Beam 3

-0.3

-0.4

## Amazon γ<sub>0</sub>

$$\gamma_0 = \frac{\sigma_0}{\cos(\theta_{inc})}$$

- PALSAR found γ<sub>0</sub> values in the Amazon stable across 20-45 degrees in incidence angle\*
  - Wet-dry seasonal difference of ~ 0.27 dB\*\*
  - Wet season is approx. Nov-April.
- Best estimates are:
  - HH ~ -6.28 dB (std 0.18)
  - HV ~ -11.15 dB (std 0.21)
  - Not clear which season this is from!



\*\*M. Shimada. Long-term stability of I-band normalized radar cross section of amazon rainforest using the jers-1 sar. Canadian Journal of Remote Sensing, 31(1): 132–137, 2005.

RAP correction is range antenna pattern correction



### Regions used in $\gamma_0$ Analysis Include data in blue polygon that not in black polygon



### PALSAR Found $\gamma_0^{HH} = -6.28 \text{ dB}$ and $\gamma_0^{HV} = -11.15 \text{ dB}$ Histograms of Aquarius $\gamma_0$ For the Three Beams



#### Amazon Gamma 0 HH [dB]



### **Bias compared to PALSAR** PALSAR values: HH: -6.28 dB; HV: -11.15 dB

| Asc / Dec     | Beam 1 | Beam 2 | Beam 3 |
|---------------|--------|--------|--------|
| All HH        | 0.03   | 0.03   | 0.07   |
| Ascending HH  | 0.06   | 0.01   | 0.01   |
| Descending HH | 0.01   | 0.04   | 0.15   |
|               |        |        |        |
| All VV        | -0.02  | 0.04   | 0.07   |
| Ascending VV  | 0.00   | 0.02   | 0.05   |
| Descending VV | -0.05  | 0.07   | 0.08   |
|               |        |        |        |
| All HV        | 0.07   | 0.17   | 0.10   |
| Ascending HV  | 0.09   | 0.15   | 0.06   |
| Descending HV | 0.05   | 0.19   | 0.16   |

#### *No significant ascending / descending difference*

## Summary

- The exponential drift correction appears to be effective to remove the calibration drift in the first few months after instrument turn on
  - The drift of scat and CAP wind speed retrieval bias has also been reduced.
- Some fine tuning will still be needed to remove the residual calibration bias.
- Once tuning is complete, the calibration algorithm and exponential correction table will be applied to the v4 processing.
- An interesting lesson: Amazon is not an absolute "stable" target, with about 0.5 dB seasonal variation repeatable over two years.
  - The radar sigma0 reaches peak level around May, near the end of rain season.

### Filtering for Calibration Tracking Plots

- Latitude within [-50, 50]
- NCEP speed> 3 , NCEP speed< 15
- SSMI/S speed > 0, SSMI/S speed < 30
- No rain indicated by SSMI/S
- No pointing flags set or anomaly flag set.
  radiometer\_flags, bits 12 and 16.
- Plot 28 day moving window average.