

SMOS and in situ salinity: rain and near-surface vertical stratification effects

J. Boutin¹, N. Martin¹, O. Hernandez¹, G. Reverdin¹, F. Gaillard², S. Morrisset¹, N. Reul³

¹ CNRS/LOCEAN Paris, France
² IFREMER/LPO Plouzané, France
³ IFREMER/LOS Toulon, France

+ Coll. With T. Delcroix, C. Maes IRD/LEGOS Toulouse, France

Boutin et al., SMOS-AQUARIUS WS 2013

SMOS S_{1cm} fresher than in situ S_{-5m}

Motivation:

See description of various CATDS/OS products on www/.catds.fr

	CATDS CEC-IFREMER v2	CATDS CPDC (real time)	CATDS CEC-LOCEAN v2013		
Τ _b	L1b Reconstructed on EASE grid	L1b Reconstructed on EASE grid (>=25km)	ESA L1c (reconstructed on ISEA-15km grid)		
SSS retrieval	SSS(T _{bx} +T _{by})	L2OS v5 (Dwell-line; iterative retrieval)	L2OS v5 (Dwell-line; iterative retrieval)		
	+: not affected by Faraday rotation	+: Tb weighted by radiometric accuracy; wind adjusted & theoretical error estimate	+: Tb weighted by radiometric accuracy; wind adjusted & theoretical error estimate		
	-: no check of dwell line consistency	-: complex	-: complex		
Wind-model	Model 2	Model 1	Model 1		
Calibration	Single OTT + daily 5°x5° adjustment wrt SSS	Variable OTT (~every 2 weeks)	Variable OTT (~every 2 weeks)		
	climato	+: correct most seasonal biases(in reprocessed	+: correct most seasonal biases		
	+: single OTT calibration	version only)	-: remaining latitudinal biases(within ~+/-0.5pss)		
	-: need additional bias correction (in time and space) that mask part of interannual variability	-: remaining latitudinal biases(within ~+/-0.5pss)			
Flagging	interorbit consistency / RFI %	L2OS 'retrieval flags'	L2OS 'retrieval flags' and L2OS RFI flag		
	+: more refined than L2OS flags	-: insufficient sorting of RFI	+/-: better RFI sorting than CPDC but less efficient than CEC-IFREMER		
Region of FOV considered	AFFOV only	EAFFOV (+/-400km from swath centre)	EAFFOV provided 130T _b in AFFOV (~+/-300km from swath centre)		
	+: avoid suspicious Tb in EAFFOV	wind adjustment)	+: keep large incidence angle variation (=> better wind adjustment) and numerous Tb in AFFOV		
	-: reduced number of Tbs		-: more suspicious Tb in EAFFOV than in AFFOV		
Average	Simple average after thorough filtering of inconsistent SSS	Simple average	Weighted by retrieval error and SSS equivalent resolution		
	+ interorbit consistency check	- no interarbit consistency check	+measurement spatial resolution		
			- no interorbit consistency check		
Format	Netcdf – rectangular grid	Netcdf – EASE grid	Netcdf – rectangular grid		
Access	support@catds.fr	support@catds.fr	support@catds.fr		
Period	June 2010-December 2012	Reprocessed: Jan 2010-April 2012/ Real time up to now	Jan 2010-Dec 2012		
Resolution	Daily, 10-days, Monthly, 0.25°, 0.5°, 1°	Daily, 10-days, Monthly, 50km,100km,200km	Monthly, 10-days, 0.25° (SSS averaged over		

SMOS S_{1cm} – ARGO S_{~5m} & SSMI RR SMOS ascending passes (6am) ITCZ

SMOS SSS- ARGO SSS versus SSMI RR Tropical Pacific 5S-5N (July-Sept 2010)

- How robust is S_{smos} - S_{argo} ~ -0.17pss/mm/hr ?
- How does it compare with rain signature detected on in situ drifters salinity (~45cm depth)?

SATELLITE

SMOS SSS

ESA v5 reprocessing

SSS at 1cm depth ; ~40km resolution or averaged (CATDS-CEC/LOCEAN_v2013 product

available at www.catds.fr)

Rain Rate:

-SSM/I F16 & F17; 0.25° resolution; SMOS SSS colocated *within -80mn, +40mn*

RemSSS: <u>www.ssmi.com</u>

-TRMM 3B42 v7: average of satellite RR every 3 hours; 0.25° resolution; SMOS SSS & TRMM RR colocated *within -3hr, 0hr* before SMOS measurement

IN SITU SSS

ARGO INDIVIDUAL PROFILES

'SSS' between 10m and 4m depth; Colocation with SMOS within +/-5days, +/-50km

CORIOLIS GDAAC: http://www.coriolis.eu.org

ARGO + TSG OPTIMAL INTERPOLATED SSS MAPS (ISAS)

Monthly maps from In-Situ Analysis System v6

http://wwz.ifremer.fr/lpo/SO-Argo/Products/Global-Ocean-T-S

SEA SURFACE AUTONOMOUS DRIFTER SSS

Upper S at 45cm depth; Pacific Gyre drifter http://www.locean-ipsl.upmc.fr/smos/drifters

smos+ sos to science element SSSsmos-SSSargo = fn(RR) under various conditions

Influence of rain tested with:

- SMOS SSS along descending orbits,
- TRMM 3B42 RR instead of SSMI RR => 3hr RRaverages instead of coloc at -80mn+60mn from SMOS but data at all local times =>test various colocations criteria (mean TRMM3B42) time 0-3hr before SMOS, within -2hr;+1hr from SMOS)
- After selecting only ARGO SSS with no rain on TRMM 3B42 RR

Influence of rain tested with:

SSMI RR along descending orbits,

TRMM 3B42 with various colocations criteria (Asc & Desc Orbits), After selecting only ARGO SSS with no rain on TRMM 3B42

Zone ITCZ	Rain	aRR+b	r	N	
SsmosA-Sargo	SSMI -80mn +60mn	-0,17RR-0,16	-0,49	7152	
SsmosD-Sargo	SSMI -80mn +60mn	-0,13RR+0,00	-0,36	7101	

Influence of rain tested with:

SSMI RR along descending orbits,

TRMM 3B42 with various colocations criteria (Asc & Desc Orbits),

After selecting only ARGO SSS with no rain on TRMM 3B42

Zone ITCZ	Rain	aRR+b	r	Ν	
SsmosA-Sargo	SSMI -80mn +60mn	-0,17RR-0,16	-0,49	7152	
SsmosD-Sargo	SSMI -80mn +60mn	-0,13RR+0,00	-0,36	7101	
SsmosA-Sargo	TRMM 3B42 0-3h before SMOS	-0,14RR-0,26	-0,30	11273	
	TRMM3B42 0-2h before; 0-1hr after	-0,13RR-0,26	-0,32	6038	
SsmosD-Sargo	TRMM 3B42 0-3h before SMOS	-0,11RR-0,04	-0,17	12411	
	TRMM 3B420-2h before; 0-1hr after	-0,15RR-0,02	-0,26	6735	

Influence of rain tested with:

SSMI RR along descending orbits,

TRMM 3B42 with various colocations criteria (Asc & Desc Orbits),

After selecting only ARGO SSS with no rain/rain on TRMM 3B42

Zone ITCZ	Rain	aRR+b	r	Ν	
SsmosA-Sargo	SSMI -80mn +60mn	-0,17RR-0,16	-0,49	7152	
SsmosD-Sargo	SSMI -80mn +60mn	-0,13RR+0,00	-0,36	7101	
SsmosA-Sargo	TRMM 3B42 0-3h before SMOS	-0,14RR-0,26	-0,30	11273	
	TRMM3B42 0-2h before; 0-1hr after	-0,13RR-0,26	-0,32	6038	
SsmosD-Sargo	TRMM 3B42 0-3h before SMOS	-0,11RR-0,04	-0,17	12411	
	TRMM 3B420-2h before; 0-1hr after	-0,15RR-0,02	-0,26	6735	
SsmosA-Sargo (norain)	TRMM 3B42 0-3h before SMOS	-0,14RR-0,25	-0,33	6083	

Influence of rain tested with:

SSMI RR along descending orbits,

TRMM 3B42 with various colocations criteria (Asc & Desc Orbits),

After selecting only ARGO SSS with no rain/rain on TRMM 3B42

Zone ITCZ	Rain		aRR+b	r		N	
SsmosA-Sargo	SSMI -80mn +60mn		-0,17RR-0,16	-	0,49	7152	
SsmosD-Sargo	SSMI -80mn +60mn		-0,13RR+0,00	-	0,36	7101	
SsmosA-Sargo	TRMM 3B42 0-3h before SMOS		-0,14RR-0,26	-	0,30	11273	
Soncitivity to SSMI PP		er	-0,13RR-0,26	- (<mark>0,32</mark>	6038	
Sensitivity to SSIM KK Ssmos-Sargo~ -0.13 RR0.17 RR (1207 - 0.13 RR0.17 RR		S • after	-0,11RR-0,04	/ -	<mark>0,17</mark>	12411	
			-0,15RR-0,02	- /	<mark>0,26</mark>	6735	
s (mm/nr) (IICZ region)			-0,14RR-0,25	-	<mark>0,33</mark>	6083	

Better correlation with SSMI F16 & F17 RR than with TRMM 3B42 ⇒ sensitivity to temporal colocation distance Ssmos-Sargo always negatively correlated with RR

Cnes

Again fresh region in 2010 fresher in SMOS than in ISAS maps

SMOS S_{1cm} – ARGO S_{~5m} & SSMI RR SMOS ascending passes (6am) SPCZ

Smos[A,50km] vs Argo [18S2S-160E170W] - [2010-06-01 ; 2011-03-01]

Cesa

Zone ITCZ	Rain	aRR+b	r	Ν
SsmosA-Sargo	SSMI -80mn +60mn	-0,17RR-0,16	0,49	7152
Zone SPCZ				
SsmosA-Sargo	SSMI -80mn +60mn	-0,22RR-0,26	-0,51	4305
SsmosD-Sargo	SSMI -80mn +60mn	-0,19RR-0,29	-0,40	2716
SsmosA-Sargo	TRMM 3h before	-0,15RR-0,20	-0,33	8352
SsmosD-Sargo	TRMM 3h before	-0,16RR-0,23	-0,32	5537

Better correlation with SSMI F16 & F17 RR than with TRMM 3B42 ⇒ sensitivity to temporal colocation distance Ssmos-Sargo always negatively correlated with RR ITCZ + SPCZ

Sensitivity to SSMI RR (r>0.4) Ssmos-Sargo~ -0.17 RR - -0.22 RR (mm/hr) (ITCZ+SPCZ)

Boutin et al., SMOS-AQUARIUS WS 2013

S_{smos} vs S_{isas}(June 2010-Feb 2011)

No rain]-3-0hr] <Ssmos - Sisas>= -0.15 +/0.65

Rain]-3-0hr] <Ssmos - Sisas>= -0.34 +/0.80

=> Mean effect of rain (as determined on TRMM 3B42) : ~-0.19

Rain on SMOS in 25% of cases <RR>=1,40mm/hr

A tentative comparison between effect of rain on SMOS and on drifter SSS:

Effect of rain on SMOS SSS (1cm depth) ~-0.19 \Rightarrow After correction of atmospheric effect: ~-0.15

Effect of rain on drifter at 45cm depth ~ -0.07

=> At 15cm depth ~ -0.09

(Assuming a 20% increased effect at 15cm depth wrt 45cm depth (as suggested by comparisons from drifters (Reverdin et al. 2012))

esa

Summary

- SSSsmos-S_{~5m} ~ 0.2 RR (mm/hr)
- SSMIS at less than 80mn from SMOS better to caracterize rain events affecting SSSsmos-S_{~5m} than TRMM 3B42
- Preliminary comparison with drifter => after atmospheric correction, ~60% (~0.1RR?) of observed SMOS freshening after rain events is likely a true surface salinity effect – Ongoing work; Need further comparisons with other surface measurements, closer RR colocations...
- No evidence of a roughness effect of RR in ITCZ (not shown)
- Rain effect has impacts on large scale SSS variability observed from SMOS and from in situ SSS

Ifremer

November 2011-November 2010

2011-2010 SSS variability (Strong La Niña in 2010)

July 2011-July2010

See monthly animations on SMOS blog and CATDS news

Larger contrasts on SMOS SSS anomalies than on ISAS SSS anomalies A consequence of systematic negative difference of SMOS SSS – ISAS SSS in low SSS/rainy regions

