

Upper-ocean stratification from drifters for SMOS/Aquarius cal-val

G. Reverdin, S. Morisset Gloscal team (F. Gaillard, P. Blouch) J. Boutin and SMOS LOCEAN team,

LOCEAN, UMR CNRS/UPMC/IRD, Paris, France LPO, CMM/CNRM

French GLOSCAL SMOS Cal/Val participants (IFREMER, Meteo-France, LEGOS)

The issues

- 5% of tropics with large daily SST cycles (larger than 0.5°C amplitude; 2%, > 1.5°C) Impact on SMOS retrievals? Daily SSS?
- 1% of data in the tropics with large fresh water input from rainfall (10% in wet areas). What is the near surface stratification and residual effects on SSS?

Earlier studies (Henocq et al., 2010) show gradients between 1-m and 10-m.

Can we access the 0 to 1-m from drifters?

The early SVP drifter models (in 2005)

PacificGyre (SBE 37 SI)

Metocean (SBE 47)

Since then, C/T SeaBird sensors are all unpumped SBE 37 SI sensors; Also, comments on difference in T and C depths resulted in some small changes (sensors now closer) **T, C close to 40-50 cm**Changes in drogue attachment + possibility of **SST (near 15-17 cm)** or SLP measurement (Metocean or PacificGyre);

Data present variability, which can be Either suspicious, 'noisy', or correct...

Tropical Atlantic near 10-15°W 5-10°S

tropical Pacific 20°S

Removed by our quality control

kept!

Comparison with SVP-S Argo + TSG ORE SSS Example of South Pacific eastern subtropical gyre Is there stratification between 40-cm and 5-m?

Dry region:
Positive near-surface gradient?

Rain/fresh water stratif-

Courtesy of Meike-Sean Martins and Detlef Stammer (ZMAW)

Temperature stratification – daily cycle Ttop and Tsal

Ttop at 17 cm; Tsal at 43 cm (Pacificgyre) or 62 cm

(Metocean)

6pm-6am Average 0.15°C No strat between Ttop and Tsal

Reverdin et al., JGR, 2013

T or S stratification'

Comparison of T(17 cm) and T(43 cm) (different classes)

In add., C (cell at 39 cm)

- either S(C, T=Tsal)
- or TC(C, S=cst)

(usually, a better assumption at this depth; except evening large cycles S_{6pm}-S_{6am} =

0.05 psu)

Floats to measure **C,T closer to the surface** (and other parameters: SLP, wave spectra)

surplas surpact

Serve to validate C,T from SVP drifters Provide stratification data (+ met info for surpact)

Surpact: a wave-rider

LOCEAN (Reverdin et al., 2013)
Developed with SMRU
Test Deployements in Fromvar/ Banyuls,
Prototypes Pirata et Pandora
First long deployments Strasse/SPURS

Reverdin et al., Oceanography, april 2013

SMOS

Wave spectra example of set-up (deployment > 4 mois in sub-tropical NA (SPURS))

Retrieved winds

Scattering 0.85 m/s for WS 4 to 7 m/s &1.4 m/s for WS 8 to 11 m/s wrt SSMIS/wind retrieval (100 days)

Strasse – time series 4

Wind

Wave height

S

Weak daily SST cycle 0.01 psu daily SSS cycle (down to 1-2 meters)

SVP drifter (~40cm depth)

SSS freshenings near Atlantic ITCZ Associated with rainfall (not seen in Argo)

S(40 cm) variability related to rainfall (SPCZ)

S(15-cm) – S(45-cm) 17 events SVP-BS / Surplas

Individual rain events: 25% more at 15-cm, but for less than an hour (also, T decrease and stratification)

Wind retrievals during Rain events; S stratification

Figure 4. (a) T (temperature) and (b) S (salinity) from Surpact 30798 and attached Pacific Gyre 114638 on September 29, 2012. (c) Estimated wind speeds (time in GMT).

5 cases on this drifter; 2 with weaker wind, one wiht no change, and two with Stronger wind

Regions of large vertical stratification, but also Horizontal variability (off Amazone-Orinoco)

June 2012, a case of northward advection of the low SSS of Amazone outflow

September 2010: a case of strong entrainment eastward of low SSS In retroflection of NECC

Conclusions & Perspectives

- Multi-sensor Surpact will be useful to estimate stratification with rainfall (both T and S contribute) or daily heating. Near-surface effects; quantitative for freshwater input estimates? But fouling... (deployments wet tropics: PIRATA, others?)
- Top temperature from SST drifters somewhat difficult to interpret for high daily cycles (> 1.5°C, 2% of tropical cases), but seems to be mostly real signal in top layer (one PIRATA PG SVP-BS drifter will have internal T). Associated SSS signal?

<u>Perspectives</u>

- Analysis SPURS (~90 SVP-S drifters)
- Deployments wet tropics Atlantic + Indian (?) + Amazone-Orinoco (with rainfall rate estimates?)
- SMOS SSS co-locations

Wind dependency (but here with Tsurpact at 4 cm?)

And between 15 and 17 cm

Not many daily cycles with large T However, Changes in C near 15 cm Result both from stratification in T(15 cm) – T(17 cm) and S

Not easy to interpret because external grid probably results in vertical steering

Les sauts et ce qu'on en fait!

07/25

07/27

07/28

07/29

08/01

08/02

Les corrections Leur précision

Utilisation des flotteurs Argo

