Salinity Remote Sensing from SMAP
NASA/RSS SMAP Salinity Product

Thomas Meissner, Frank Wentz and Andrew Manaster
Remote Sensing Systems

Tony Lee
Jet Propulsion Laboratory

Global Ocean Salinity and the Water Cycle Workshop
WHOI, May 22 - 26, 2017
Outline

• Overview of SMAP Instrument
• RSS SMAP Salinity Retrieval Algorithm
• SMAP versus Aquarius
• Validation
• Data Distribution
• Future Plans
SMAP

Soil Moisture Active Passive

Orbit Altitude: 685 km.
Inclination: 98 deg.
Local ascending/descending time: 6 PM/AM.
8-day repeat orbit.

http://smap.jpl.nasa.gov/multimedia
SMAP Instrument

- 6-meter mesh antenna.
- Conical scanning @ 14.6 rpm. Scan time: 4.1 sec
- Earth Incidence Angle: 40°.
- Radiometer: Center frequency: 1.41 GHz + Radar
- Taking observations since April 2015.
SMAP

Swath – Footprint - Noise

- Full 360° scan views the Earth.
- 1000 km wide swath.
- 3-dB (half power) footprint size: 40 km.
- Time for sampling 1 footprint: 17 msec.

Aquarius and SMAP have both about **the same instrument noise**.
The Aquarius data are **pre-averaged** during L1/L2 processing. The SMAP data **do not**.
Noise figures @ L2: **Aquarius ≈ 0.4 psi. SMAP ≈ 1.0 psi.**
SMAP Salinity Retrieval Algorithm Challenge
Removal of Many Large Spurious Signals

Sun
0 – 30 psu

Antenna
0 – 4 psu

Galaxy & Cosmic
0 – 6 psu

Moon
0 – 2 psu

Ocean Surface
0 – 10 psu

Surface Roughness
0 – 10 psu

SMAP

Ionosphere
0 - 2 psu

Atmosphere
0 – 10 psu

Land/Ice

RFI

Needs to be done to 0.2 psu = 0.1 Kelvin accuracy
SMAP Salinity Retrieval Algorithm

Basic Steps

- **SMAP Antenna Temperatures**
 calibrated + RFI filtered

- **Remove antenna effects**

- **Remove space contributions:**
 galaxy, sun, moon, cold space

- **Top of the Ionosphere**
 Brightness Temperatures

- **Correct for Faraday Rotation**
 In Earth Ionosphere (3rd Stokes)

- **Top of the Atmosphere**
 Brightness Temperature

- **Remove atmospheric attenuation**
 (O_2, cloud and H_2O Absorption)

- **Find Salinity for which**
 emissivity of Meissner-Wentz 2012 dielectric model matches specular TB

- **SMAP Salinity**

- **Specular Brightness Temperature**

- **Remove Surface Roughness Effects (Wind)**

- **Sea-Surface Brightness Temperature**

- **adapted from Aquarius**

As it was the case with Aquarius, the SMAP salinity retrievals are constrained by the global average, which is matched to a reference field (currently HYCOM).

Other than the global average, the HYCOM reference field is NOT an input in the SMAP salinity retrieval.
SMAP Salinity
May 2015: First light NASA/RSS SMAP SSS image

Running 8-day average (April – August 2015)
Forward – Backward Look allows assessment of removal of spurious signals if they depend on looking direction without any external reference salinity field.

\[1 \text{ Kelvin } \Delta T_B = 2 \text{ psu } \Delta SSS \]

SMAP T_B (radiance)
Forward – Backward Look
after removing galactic reflection
Forward – Backward Look

after removing Faraday Rotation in Earth Ionosphere

undetected RFI

Wind direction (storms)
Forward – Backward Look
after removing wind direction component of surface emissivity

undetected RFI sneaking through the filter
Reflected Galaxy (1)

One of the major error sources
SMAP For-Aft allows improvement of galaxy model

Tilted facet model of reflected galaxy from rough ocean surface
Reflected Galaxy (2)
One of the major error sources
SMAP For-Aft allows improvement of galaxy model

Reflected galaxy from SMAP for – aft
corresponds to effective increase in roughness

orbit position

time

day after 1 April 2015
The SMAP for-aft galaxy model is used in the Aquarius V5 Salinity Retrievals.

Aquarius TB (or salinity) biases using tilted facet model of reflected galaxy from rough ocean surface.

Aquarius TB (or salinity) biases using model of reflected galaxy based on SMAP for – aft.
Emissive Antenna

requires additional calibration effort

- The SMAP reflector mesh is **lossy (emissive)**.
- \(T_B = T_{B,\text{Earth}} + \varepsilon (T_{\text{refl}} - T_{B,\text{Earth}}) \)
- No measurement of physical temperature of SMAP antenna.
 - Driven by solar heating.
 - Only JPL thermal model data are available.
 - OK for soil moisture.
 - Thermal model appears to be inaccurate when S/C goes into eclipse (50 K temperature change).
- Emissivity about 1%. This is 4 times larger than pre-launch value, which is used in SMAP TB L1B.
- Use of SMAP L1B TB (Version 3) would cause large biases (1-2 psu) in the salinity retrieval.
- The Aquarius antenna was not emissive.
Reflector Temperature

JPL Thermal Model

\[T_{\text{refl}}: \text{JPL thermal model} \]

TB Bias
Adjusted Reflector Temperature

- Static table based on zonal average of reference salinity
- Assume same reflector temperature for v/h-pol.
- Annual repeat cycle for reflector temperature

TB biases with JPL thermal model in RSS V2 Release
Other Differences between SMAP and Aquarius

• **Correction for surface roughness**
 – SMAP lost its radar.
 – Use wind speeds from WindSat and SSMIS F17.
 – Same ascending node time as SMAP (good overlap).
 – Unavailable in rain (use NCEP wind speeds).

• **Sun glint**
 – Aquarius was staring away from the sun. SMAP performs full scan.
 – SMAP sees sun reflection (glint) from the ocean surface
 – Can be large (exceeding 15 K = 30 psu).
 – Solar radiation at L-band is strong and variable (1 Mio Kelvin).
 – Signal enters through sidelobes of the antenna (uncertainties).
 – Signal depends on surface roughness (not well modelled).
 – Approach: Flag out areas of potential strong signal (<10% lost data).
Time Mean SMAP – ARGO
1-deg monthly average. Scripps ARGO fields
The HYCOM field was used as reference for developing the geophysical model function and the adjusted reflector temperature.

The salty biases (0.15 psu zonal average) between SMAP and ARGO in the tropics are mainly a reminiscent of the salty bias between HYCOM and ARGO.
In most cases the observed std.dev. between SMAP and OI ARGO field is not due to an error in SMAP. In many instances it is due to poor sampling of ARGO measurements. As it was the case with Aquarius, it is the systematic errors (biases) we need to worry about.
Global Performance Estimate

SMAP (RSS V2.0) – ARGO (Scripps)
1-deg monthly average
[60S, 60N], SST>5°C
open ocean (land and sea ice fractions < 10⁻³)

<table>
<thead>
<tr>
<th>BIAS</th>
<th>-0.03 psu</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS Difference</td>
<td>0.22 psu</td>
</tr>
<tr>
<td>RMS Difference</td>
<td>0.19 psu</td>
</tr>
<tr>
<td>AQUARIUS – ARGO</td>
<td></td>
</tr>
</tbody>
</table>

Triple Collocation Estimate:
RMS differences SMAP – ARGO - HYCOM

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SMAP - ARGO</td>
<td>0.22 psu</td>
</tr>
<tr>
<td>SMAP - HYCOM</td>
<td>0.24 psu</td>
</tr>
<tr>
<td>HYCOM - ARGO</td>
<td>0.18 psu</td>
</tr>
<tr>
<td>Estimated RMS SMAP</td>
<td>0.19 psu</td>
</tr>
<tr>
<td>RMS AQUARIUS (triple point)</td>
<td>0.17 psu</td>
</tr>
</tbody>
</table>
SMAP is an excellent high wind sensor

L-band radiometer (SMOS, SMAP) has good sensitivity up to 70 m/s.

Not affected by precipitation.

http://journals.ametsoc.org/doi/10.1175/BAMS-D-16-0052.1.
Realistic Values of Intensity and Wind Radii in Tropical Cyclones

<table>
<thead>
<tr>
<th></th>
<th>Max wind</th>
<th>33 m/s Rad</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMAP: cat.5 TC</td>
<td>70 m/s</td>
<td>55 km</td>
</tr>
<tr>
<td>ASCAT: cat 1 TC</td>
<td>35 m/s</td>
<td>10 km</td>
</tr>
<tr>
<td>Best Track 10-min sustained</td>
<td>69 m/s</td>
<td>63 km</td>
</tr>
</tbody>
</table>

TC Fantala (Seychelles) April 17, 2016. Estimated max. 10-min sustained winds: 69 m/s.
NASA/RSS SMAP SSS Version 2 Release

Data Distribution

- **Version numbering does NOT match other SMAP data versions** (including JPL product).
 - partly different calibration
 - different gridding
 - different algorithm

- **available at**
 - RSS www.remss.com/missions/smap/salinity

- Currently batch processed once every month
 - we consider producing the data with less latency or near real time if there is demand
 - like Aquarius Quick-Look

- netCDF4 (CF and ACDD compliant)

- Detailed Release Notes (ATBD, Data Format SPEC, Validation)
Data Products

• **Level 2C**
 – swath data resampled on fixed ¼ deg Earth grid (like WindSat L2)
 – keep original resolution
 – no noise reduction. noise ≈ 1.0 psu
 – contains all necessary swath information
 – brightness temperatures: antenna, TOI, TOA, surface
 – **Q/C flag (important!)**

• **Level 3**
 – ¼ deg maps
 • real spatial resolution about 40 km.
 – Monthly maps
 – Daily 8-day running average maps
 • +/- 3 ½ days from center day
 • SMAP repeat cycle = 8 days
 – contains sea surface temperature, land fraction, sea ice fraction
 • allows user flexibility
Summary

- **SMAP** is able to measure ocean surface salinity over the open ocean with **almost the same accuracy** as **Aquarius**.
- **SMAP** has **better resolution** (40 km) than **Aquarius** (100 – 150 km).
- **SMAP’s emissive reflector** does require static, **zonal information** from an external **reference salinity field** (HYCOM, ARGO, ...)
 - loss of predictive power for zonal averages
- **SMAP’s 2-look capability** helps to improve the salinity retrievals for SMAP and Aquarius.
- **SMAP** is an **excellent high wind sensor**.
 - Future L-band missions.
Path forward

- Next NASA/RSS release (V3) planned for early 2018.
- Geophysical model function fully consistent with Aquarius V5, which will be released in late 2017.
- As with Aquarius V5 we will switch from HYCOM to ARGO as reference salinity.
 - Eliminate small positive bias between SMAP and ARGO in tropics.
- Include uncertainty estimates.
- Improved correction for intrusion from land surfaces through sidelobes.
 - Improve retrieval accuracy close to land.
 - Possibly also near sea ice edge (further out).
Backup Slides
Adjusted Reflector Temperature

\[T_{\text{refl}}: \text{JPL thermal model} \]

- Orbit position
- Time

static table based on zonal average of reference salinity

- Assume same reflector temperature for v/h-pol.

annual repeat cycle for reflector temperature

\[T_{\text{refl}}: \text{adjusted reflector temperature in RSS V2 Release} \]
TSG std. dev.

Courtesy of K. Drushka