Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit the NASA Salinity website for more information.

Science Meetings

Drivers of Pacific-Atlantic Basin Contrasts in Long-term Salinity Changes
Durack, P.J., Gleckler, P.J., and Guilyardi, E. (25-Feb-16)

Previous work has highlighted near-surface salinity pattern amplification (PA) and depth-integrated halosteric (salinity-driven) sea-level changes in long-term change estimates from observations and climate model simulations. These suggest that fresh ocean regions are becoming fresher, and salty regions saltier in part to a response to evaporation minus precipitation (E-P; water cycle) changes driven by a warming Earth.

While near-surface salinity changes relate to the climatological mean (fresh becoming fresher, salty becoming saltier), subsurface salinity changes have also been recorded. Similar to the near-surface, these changes represent a complex three-dimensional structure that is different in each ocean basin. Like near-surface changes, subsurface salinity changes also share a strong correspondence with the subsurface climatological mean. When integrated through the depth of observed data coverage (0-2000 m), these show a clear basin halosteric contrast - a freshening Pacific and an enhancing Atlantic salinity.

As long-term observational insights are limited, model simulations provide a novel method to assess and validate observed change estimates, and attribute the drivers of long-term change. Using the CMIP (Coupled Model Intercomparison Project phase 3 & 5) 20C3M/historical (20th century), SRES/RCP (future 21st century) and pre-industrial (piControl; unforced) simulations, these basin salinity change contrasts are investigated and their relationship to simulated E-P (water cycle) changes is diagnosed. The intrinsic variability of both modeled salinity and E-P change fields is investigated to ascertain an envelope of unforced (piControl) climate variability, an estimate currently unavailable for long-term observational estimates due to poor measurement coverage. These unforced distributions are compared to those of weakly- (20C3M/historical) and strong-forced (SRES/RCP) simulations to search for the emergence of an anthropogenic-forced fingerprint from intrinsic variability as defined by the models.

Using the forced-signal versus variability assessments from models, estimates of observed salinity change are revisited, and the significance of resolved changes over 1950-present are investigated.